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SUMMARY: (10 pt) 

 

Due to the complicated geometric shape, it’s difficult to precisely obtain the aerodynamic force of high-speed trains. 

The main approaches, numerical simulations and wind tunnel tests, both suffer the issues of long assessment period 

and prohibitive cost. Taking numerical and experimental data as the training data, the present work proposed a data-

driven rapid prediction model to solve this problem, which utilized the Support Vector Machine (SVM) model to 

construct a nonlinear implicit mapping between design variables and aerodynamic forces of high-speed train. Within 

this framework, it is a key issue to achieve the consistency and auto-extraction of design variables for any given 

streamlined shape. A general parameterization method for the streamlined shape which adopted the idea of step-by-

step modeling has been proposed, so that the rapid extraction of the values of design variables could be realized. 

Taking aerodynamic drag as the prediction objective, the effectiveness of the model was verified. The results show 

that the proposed model can be successfully used for performance evaluation of high-speed trains. Under the 

condition that the prediction accuracy is comparable with numerical simulations, the efficiency of the rapid 

prediction model can be improved by more than 90%. With the enrichment of data for the training set, the prediction 

accuracy of the rapid prediction model can be continuously improved. Current study provides a new approach for 

aerodynamic evaluation of high-speed trains and can be beneficial to corresponding engineering design departments.  
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1. INTRODUCTION 

As a near-ground rail transport tool with large slender ratio, the high-speed train usually 

experiences complex three-dimensional turbulent flow at high Reynolds number (Baker, 2010; 

Raghunathan et al., 2002; Schetz, 2001). The complex geometric shapes of key exposed 

components such as pantographs, bogies, and windshields have a great impact on the 

aerodynamic performance of trains. During the engineering design process, it’s unbearable to 

perform high-fidelity numerical simulations for practical high-speed trains with multiple 

carriages. Therefore, most researches on the flow field characteristics of high-speed trains 

commonly consider simplified shapes (Hemida & Baker, 2010), for instance, ignoring the 

influence of bogies, pantographs and windshields, reducing the number of carriages(Wang et al., 

2008), and scaling down the size of the model. Aiming at precisely and efficiently predicting 

aerodynamic force of high-speed train with arbitrary streamlined shape, a data-driven rapid 

prediction model was proposed in current study, which could make full use of existing data from 

numerical simulations and wind tunnel tests. With use of this model, a nonlinear implicit 
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mapping between design variables and aerodynamic forces of high-speed train could be 

constructed. More importantly, within this framework, it is a key issue to achieve the consistency 

and auto-extraction of design variables for any given streamlined shape. A general 

parameterization method for the streamlined shape which adopted the idea of step-by-step 

modeling has been proposed, so that the rapid extraction of the values of design variables could 

be realized. 

 

2. INVERSE DESIGN OF THE STREAMLINED HEAD 
The inverse design of the head shape of high-speed train is to obtain the values of the design 

variables according to the three-dimensional geometric data of the existing head shape, then 
input the values into the head shape parametric design model to implement the reconstruction of 
the three-dimensional shape. The specific process for the inverse design of a streamlined head is 
shown in Figure 1： 
○1  Determine the streamlined head that needs to be inversely designed, and perform grid 

discretization on it. 
○2  Use the self-developed data processing code to automatically obtain the discrete data of 

each profile according to their location characteristics. 
○3  Adopt PSO algorithm to optimize and obtain the optimal value of each design variable 

for the key control profiles by taking minimizing the average fitting error as the optimization 
goal. 

  
Figure 1. Flow chart for the inverse design of the streamlined head. 

As seen in Figure 1, the single-objective PSO algorithm was adopted herein for the inverse 
design of the streamlined head. The specific coefficients for PSO are listed as follows: the 
population of particle swarm is 200, the total number of iterations is 500, the value of 
acceleration factor is 2, the inertia factor gradually changes from 1.2 to 0.8 as the number of 
iterations increases, and the maximum flight speed of the particles: the value for the cowcatcher 
is 2 and the value for the other key control profiles is 5. 

The inverse design objective of each control profile is the average error between the inverse 

design profile and the target profile, and the objective function is shown below: 

𝑓𝑟 =
1

𝑛
∑ 𝑑𝑖
𝑛
𝑖=1                            （1） 

Where 𝑓𝑟 is the value of the objective function in inverse design, n is the number of discrete 

points of the control profile, and 𝑑𝑖 is the minimum distance between each discrete point and the 

target line. 

 

3. CONSTRUCTION OF THE RAPID PREDICTION MODEL 
Current study adopts the algorithm ε-TSVR (ε-twin support vector regression) proposed by 

Shao et al. (2013) compared with standard SVM algorithm, ε-TSVR owns higher prediction 
ability and requires less training time. 



Figure 2 shows the flow chart of optimizing free coefficients of the SVM model. The whole 
process is as follows: 

1) For a given training sample set, determine the number of sampling groups, randomly 
group each training sample, and ensure that the number of training samples in each group is the 
same. 

2) Determine the initial coefficients of PSO, such as the number of particle swarms, the 
number of iterations. The number of particles and the number of iterations have a great influence 
on the optimization efficiency, and should neither be too large nor too small. 

3) Select a group of training samples sequentially as the test samples and use the other 

groups of training samples to construct the sub-SVM model, then obtain the prediction error of 

the test samples. 
4) Obtain the optimal value of free coefficients after iteration. When using SVM to predict 

the target value, the average of the predicted values of each sub-SVM model is used as the final 
predicted value.  

Figure 2 Construction flow chart of the SVM model. 

4. RESULTS AND DISCUSSIONS 
The effectiveness of the rapid prediction model is validated by taking the aerodynamic drag 

coefficient as the objective in current study. The distribution of the drag coefficient of the initial 
sample set is shown in Figure 3. The design objective is obtained ether from numerical 
simulations, as the black dots show, or from wind tunnel tests, as the blue dots show in Figure 3. 
It can be seen that samples from the numerical simulations are uniformly distributed while that 
from wind tunnel tests are distributed in area with larger value ranging from 0.32 to 0.39, which 
is because samples tested in wind tunnels are designed specifically under engineering design 
requirements with plenty engineering constraints such as vehicle gauge, cab space, and head 
length. 

Figure 3 Target value distribution of the sample set. 



Taking the wind tunnel test data as benchmark data, there is little difference between CFD 
calculation error and that of rapid prediction model, indicating that when the training samples 
reaches a certain number, the accuracy of the rapid prediction model is basically the same as the 
CFD simulation. 

Table 1 Comparison of results from three different approaches. 

 T1 T2 T3 T4 

Wind Tunnel Test / / 0.3394 0.3650 

Numerical 

Simulation 
0.2783 0.3163 0.3375 0.3536 

Rapid Prediction 0.2849 0.3021 0.3485 0.3685 

Relative Error 2.37% 4.49% 2.61% 0.96% 

 

5. CONCLUSION  
The emphasis of this study is to present a framework of data-driven rapid prediction model 

and demonstrate its promising potential in predicting aerodynamic forces of high-speed trains. 
Using the proposed model, the prediction efficiency and accuracy could be both achieved. As 
demonstrated in this work, we adopted the idea of step-by-step modeling, and proposed a general 
three-dimensional parameterization method for head shape. Combining with the inverse design 
concept, the rapid extraction of the values of the design variables were realized. Using data from 
numerical simulations and wind tunnel tests as the initial training data, and adopting the SVM 
model to construct a nonlinear implicit function between design variables and aerodynamic 
forces of high-speed train, the data-driven rapid prediction model was finally proposed. Taking 
aerodynamic drag as the prediction objective, the effectiveness of the model was verified. When 
the number of training samples reaches a certain amount, the accuracy of the rapid prediction 
model can be basically the same as numerical simulations. Remarkably, although only 
aerodynamic drag is used to verify the effectiveness of the prediction model, by changing the 
objective of the training samples, it can be directly applied to the rapid prediction of other 
aerodynamic indicators such as aerodynamic lift, aerodynamic noise, and tunnel pressure waves. 
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